Hardness and Algorithms for Rainbow Connectivity

نویسندگان

  • Sourav Chakraborty
  • Eldar Fischer
  • Arie Matsliah
  • Raphael Yuster
چکیده

An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cellular networks. In this paper we give the first proof that computing rc(G) is NP-Hard. In fact, we prove that it is already NP-Complete to decide if rc(G) = 2, and also that it is NP-Complete to decide whether a given edge-colored (with an unbounded number of colors) graph is rainbow connected. On the positive side, we prove that for every ǫ > 0, a connected graph with minimum degree at least ǫn has bounded rainbow connectivity, where the bound depends only on ǫ, and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper bounds, as well as open problems and conjectures are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness and Parameterized Algorithms on Rainbow Connectivity problem

A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...

متن کامل

Inapproximability of Rainbow Colouring

A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one path in which no two edges are coloured the same. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Chakraborty, Fischer, Matsliah and Yuster have shown that it is NP-hard to compute the rainbow connectio...

متن کامل

Rainbow Connectivity: Hardness and Tractability

A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...

متن کامل

Further Hardness Results on Rainbow and Strong Rainbow Connectivity

A path in an edge-colored graph is rainbow if no two edges of it are colored the same. The graph is said to be rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph is strong rainbow connected. We consider the complexity of the problem of deciding if a given edge-colored graph is rainbow or stro...

متن کامل

New Hardness Results in Rainbow Connectivity

A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009